Existence of (Dirac-)harmonic Maps from Degenerating (Spin) Surfaces
نویسندگان
چکیده
We study the existence of harmonic maps and Dirac-harmonic from degenerating surfaces to non-positive curved manifold via scheme Sacks Uhlenbeck. By choosing a suitable sequence $\alpha$-(Dirac-)harmonic closed hyperbolic surface, we get convergence cleaner energy identity under uniformly bounded assumption. In this identity, there is no loss near punctures. As an application, obtain result about (Dirac-)harmonic (spin) surfaces. If energies map parts also stay away zero, which necessary condition, both limiting are nontrivial.
منابع مشابه
Dirac-harmonic maps from degenerating spin surfaces I: the Neveu-Schwarz case
We study Dirac-harmonic maps from degenerating spin surfaces with uniformly bounded energy and show the so-called generalized energy identity in the case that the domain converges to a spin surface with only Neveu-Schwarz type nodes. We find condition that is both necessary and sufficient for the W 1,2 ×L modulo bubbles compactness of a sequence of such maps. 2000 Mathematics Subject Classifica...
متن کاملHarmonic maps from degenerating Riemann surfaces
We study harmonic maps from degenerating Riemann surfaces with uniformly bounded energy and show the so-called generalized energy identity. We find conditions that are both necessary and sufficient for the compactness in W 1,2 and C modulo bubbles of sequences of such maps. 2000 Mathematics Subject Classification: 58E20
متن کاملMathematik in den Naturwissenschaften Leipzig Dirac - harmonic maps from degenerating spin surfaces I : the Neveu - Schwarz case
We study Dirac-harmonic maps from degenerating spin surfaces with uniformly bounded energy and show the so-called generalized energy identity in the case that the domain converges to a spin surface with only Neveu-Schwarz type nodes. We find condition that is both necessary and sufficient for the W 1,2 ×L modulo bubbles compactness of a sequence of such maps. 2000 Mathematics Subject Classifica...
متن کاملDirac-harmonic maps from index theory
We prove existence results for Dirac-harmonic maps using index theoretical tools. They are mainly interesting if the source manifold has dimension 1 or 2 modulo 8. Our solutions are uncoupled in the sense that the underlying map between the source and target manifolds
متن کاملRegularity of Dirac-harmonic maps
For any n-dimensional compact spin Riemannian manifold M with a given spin structure and a spinor bundle ΣM , and any compact Riemannian manifold N , we show an ǫ-regularity theorem for weakly Dirac-harmonic maps (φ, ψ) : M ⊗ΣM → N ⊗ φ∗TN . As a consequence, any weakly Dirac-harmonic map is proven to be smooth when n = 2. A weak convergence theorem for approximate Dirac-harmonic maps is establi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometric Analysis
سال: 2021
ISSN: ['1559-002X', '1050-6926']
DOI: https://doi.org/10.1007/s12220-021-00676-3