Existence of (Dirac-)harmonic Maps from Degenerating (Spin) Surfaces

نویسندگان

چکیده

We study the existence of harmonic maps and Dirac-harmonic from degenerating surfaces to non-positive curved manifold via scheme Sacks Uhlenbeck. By choosing a suitable sequence $\alpha$-(Dirac-)harmonic closed hyperbolic surface, we get convergence cleaner energy identity under uniformly bounded assumption. In this identity, there is no loss near punctures. As an application, obtain result about (Dirac-)harmonic (spin) surfaces. If energies map parts also stay away zero, which necessary condition, both limiting are nontrivial.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dirac-harmonic maps from degenerating spin surfaces I: the Neveu-Schwarz case

We study Dirac-harmonic maps from degenerating spin surfaces with uniformly bounded energy and show the so-called generalized energy identity in the case that the domain converges to a spin surface with only Neveu-Schwarz type nodes. We find condition that is both necessary and sufficient for the W 1,2 ×L modulo bubbles compactness of a sequence of such maps. 2000 Mathematics Subject Classifica...

متن کامل

Harmonic maps from degenerating Riemann surfaces

We study harmonic maps from degenerating Riemann surfaces with uniformly bounded energy and show the so-called generalized energy identity. We find conditions that are both necessary and sufficient for the compactness in W 1,2 and C modulo bubbles of sequences of such maps. 2000 Mathematics Subject Classification: 58E20

متن کامل

Mathematik in den Naturwissenschaften Leipzig Dirac - harmonic maps from degenerating spin surfaces I : the Neveu - Schwarz case

We study Dirac-harmonic maps from degenerating spin surfaces with uniformly bounded energy and show the so-called generalized energy identity in the case that the domain converges to a spin surface with only Neveu-Schwarz type nodes. We find condition that is both necessary and sufficient for the W 1,2 ×L modulo bubbles compactness of a sequence of such maps. 2000 Mathematics Subject Classifica...

متن کامل

Dirac-harmonic maps from index theory

We prove existence results for Dirac-harmonic maps using index theoretical tools. They are mainly interesting if the source manifold has dimension 1 or 2 modulo 8. Our solutions are uncoupled in the sense that the underlying map between the source and target manifolds

متن کامل

Regularity of Dirac-harmonic maps

For any n-dimensional compact spin Riemannian manifold M with a given spin structure and a spinor bundle ΣM , and any compact Riemannian manifold N , we show an ǫ-regularity theorem for weakly Dirac-harmonic maps (φ, ψ) : M ⊗ΣM → N ⊗ φ∗TN . As a consequence, any weakly Dirac-harmonic map is proven to be smooth when n = 2. A weak convergence theorem for approximate Dirac-harmonic maps is establi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometric Analysis

سال: 2021

ISSN: ['1559-002X', '1050-6926']

DOI: https://doi.org/10.1007/s12220-021-00676-3